Scientific papers

Disclaimer: The papers below are intended for private viewing by the page owner or those who otherwise have legitimate access to them. No part of it may in any form or by any electronic, mechanical, photocopying, recording, or any other means be reproduced, stored in a retrieval system or be broadcast or transmitted without the prior permission of the respective publishers. If your organization has a valid subscription of the journals, click on the DOI link for the legitimate copy of the papers.

3D Multi-Ion Corrosion Model in Hierarchically Structured Cementitious Materials Obtained from Nano-XCT Data   Materials 2023, 16(14), 5094

The Influence of Chemical Activity Models on the Description of Ion Transport through Micro‑Structured Cementitious Materials   Materials 16(3), (2023), 1116

Investigation of Molten Metal Infiltration into Micropore Carbon Refractory Materials Using X-ray Computed Tomography   Materials 14(12), (2021), 3148

Permeability of carbon refractory materials used in a blast furnace hearth   Ceramics International, 47, (2021), 16538-16546

Effective and Apparent Diffusion Coefficients of Chloride Ions and Chloride Binding Kinetics Parameters in Mortars: Non-Stationary Diffusion–Reaction Model and the Inverse Problem;   Materials, 13, (2020), 5522-5545

Corrosion of steel in concrete – modeling of electrochemical potential measurement in 3D geometry;   Arch. Metall. Mater., 65, (2020), 117–124

Precipitation of Inorganic Salts in Mitochondrial Matrix;   Membranes, 10, (2020), 81–109

Non-destructive investigations of pore morphology of micropore carbon materials;   Ceramics international, 45, (2019), 3483-3491

Permeability of micropore carbon materials based on steady-state pore-scale flow calculations in real 2D and 3D microstructures;   Ceramics international, 45, (2019), 17638-17645

Reference Electrodes with Polymer-Based Membranes—Comprehensive Performance Characteristics;   Membranes, 9, (2019), 161–183

3D Multi-Ion Corrosion Model in Hierarchically Structured Cementitious Materials Obtained from Nano-XCT Data   Materials 2023, 16(14), 5094

The Influence of Chemical Activity Models on the Description of Ion Transport through Micro‑Structured Cementitious Materials   Materials 16(3), (2023), 1116

Investigation of Molten Metal Infiltration into Micropore Carbon Refractory Materials Using X-ray Computed Tomography   Materials 14(12), (2021), 3148

Permeability of carbon refractory materials used in a blast furnace hearth   Ceramics International, 47, (2021), 16538-16546

Effective and Apparent Diffusion Coefficients of Chloride Ions and Chloride Binding Kinetics Parameters in Mortars: Non-Stationary Diffusion–Reaction Model and the Inverse Problem;   Materials, 13, (2020), 5522-5545

Corrosion of steel in concrete – modeling of electrochemical potential measurement in 3D geometry;   Arch. Metall. Mater., 65, (2020), 117–124

Precipitation of Inorganic Salts in Mitochondrial Matrix;   Membranes, 10, (2020), 81–109

Non-destructive investigations of pore morphology of micropore carbon materials;   Ceramics international, 45, (2019), 3483-3491

Permeability of micropore carbon materials based on steady-state pore-scale flow calculations in real 2D and 3D microstructures;   Ceramics international, 45, (2019), 17638-17645

Reference Electrodes with Polymer-Based Membranes—Comprehensive Performance Characteristics;   Membranes, 9, (2019), 161–183

3D Multi-Ion Corrosion Model in Hierarchically Structured Cementitious Materials Obtained from Nano-XCT Data   Materials 2023, 16(14), 5094

The Influence of Chemical Activity Models on the Description of Ion Transport through Micro‑Structured Cementitious Materials   Materials 16(3), (2023), 1116

Investigation of Molten Metal Infiltration into Micropore Carbon Refractory Materials Using X-ray Computed Tomography   Materials 14(12), (2021), 3148

Permeability of carbon refractory materials used in a blast furnace hearth   Ceramics International, 47, (2021), 16538-16546

Effective and Apparent Diffusion Coefficients of Chloride Ions and Chloride Binding Kinetics Parameters in Mortars: Non-Stationary Diffusion–Reaction Model and the Inverse Problem;   Materials, 13, (2020), 5522-5545

Corrosion of steel in concrete – modeling of electrochemical potential measurement in 3D geometry;   Arch. Metall. Mater., 65, (2020), 117–124

Precipitation of Inorganic Salts in Mitochondrial Matrix;   Membranes, 10, (2020), 81–109

Non-destructive investigations of pore morphology of micropore carbon materials;   Ceramics international, 45, (2019), 3483-3491

Permeability of micropore carbon materials based on steady-state pore-scale flow calculations in real 2D and 3D microstructures;   Ceramics international, 45, (2019), 17638-17645

Reference Electrodes with Polymer-Based Membranes—Comprehensive Performance Characteristics;   Membranes, 9, (2019), 161–183

Continuous Modelling of Calcium Transport through Biological Membranes;   Journal of Materials Engineering and Performance, 25 (8), (2016), 3285–3290

Determination of Diffusion Coefficients in Cement Based Materials: An Inverse Problem for the Nernst-Planck and Poisson Models;   Journal of Materials Engineering and Performance, 25 (8), (2016), 3291–3295

Neutral-carrier ion-selective electrodes assessed by the Nernst-Planck-Poisson model;   Analytical Chemistry, 87 (17), (2015), 8665–8672

Nernst-Planck-Poisson Model for the Qualitative Description of the Behaviour of Solid-Contact Ion-Selective-Electrodes at Low Analyte Concentration   Electroanalysis, 25, (2013), 133 - 140.

Growth kinetics of the intermetallic phase in diffusion-soldered Cu-5 at.%Ni/Sn/Cu-5 at.%Ni interconnections;   Materials Chemistry and Physics, 142 (2–3), (2013), 682–685

Heat transfer and inverse problems; selected cases in 1D and 3D geometries;   Archives of Metallurgy and Materials, 58 (1), (2013), 9–18

Full list of scientific papers

  1. M. Danielewski, R. Filipek, “Three-Dimensional Diagrams Describing Defect Concentrations, Transport Properties and Stress Generation in Oxides Growing on Metals”, Metall. and Foundry Eng. (No. 1469), 18, (1992), 255-264.
  2. M. Danielewski, R. Filipek, “Defect Structure in Cr2O3”, Ceramika, 42, (1993), 127-134.
  3. M. Danielewski, R. Filipek, K. Holly, W. Krzyżański, “Interdiffusion in r-Component (r≥2) Alloys, the Mathematical Model for Thin Films”, w Thin Films, eds. G. Hecht, F. Richter i J. Hahn, DGM Information¬gesellschaft mbH (Oberusel, 1994) str. 636-639 (Mat. 4th Int’l Symp. on Trends and New Applications in Thin Films – TATF’94 and 11th Conference on High Vacuum, Interfaces and Thin Films – HVITF’94).
  4. K. Holly, M. Danielewski, R. Filipek, K. Szyszkiewicz, “Interdiffusion in Multicomponent Oxides”, Sci. Bull. University of Mining and Metallurgy, Metall. and Foundry Eng., 20, (1994), 113-124.
  5. M. Danielewski, R. Filipek, K. Holly, B. Bożek, “Interdiffusion in Multicomponent Solid Solutions, the Mathematical Model for Thin Films”, phys. stat. sol. (a), 145, (1994), 339-350.
  6. M. Danielewski, K. Holly, B. Bożek, R. Filipek, “The Generalized Solutions of Transport Problems in Corrosion: Up-and-coming Optimal Approach for Real, Complex Systems”, w Mat. 3rd Int’l Symposium Corrosion Resistant Alloys, Kraków 20-22.06.1996, AGH, str. 168-175.
  7. M. Danielewski, K. Holly, B. Bożek, R. Filipek, “Interdiffusion and Stress, Free Boundary Problem for r-Component (r > 2) One Dimensional Mixture Showing Constant Concentration”, Defect and Diffusion Forum, 129-130, (1996), 295-296.
  8. M. Danielewski, K. Holly, B. Bożek, R. Filipek, “Interdiffusion and Diffusional Stuctures in Multicomponent Alloys; The Mathematical Model for Thin Films”, Defect and Diffusion Forum, 129-130, (1996), 301-302.
  9. M. Danielewski, R. Filipek, K. Holly, T. Walec, “Dyfuzja wzajemna w układach cienkowarstwowych”, w Mat. III Ogólnopolskiej Konferencji Naukowej “Obróbka Powierzchniowa”, Częstochowa – Kule, 9-12 października 1996, str. 152-157.
  10. M. Danielewski, R. Filipek, “Generalized Solution of Interdiffusion Problem: Optimal Approach for Multicomponent Bounded Systems”, J. Comp. Chem., 17, (1996), 1497-1507.
  11. M. Danielewski, R. Filipek, T. Walec, “The Generalized Solution of the Interdiffusion Problem: A New Approach for Multicomponent Bounded Systems”, Defect and Diffusion Forum, 143-147, (1997), 515-520.
  12. M. Danielewski, R. Filipek, „Chemiczna Dyfuzja Wzajemna w Układach Otwartych; Struktury Dyfuzyjne w Ciałach Stałych”, w Mat. VI Krajowego Sympozjum „Przewodniki Szybkich Jonów, Mogilany 10-12 września 1997, str. 189-196.
  13. M. Danielewski, R. Filipek, “The Generalized Solutions in Non-Equilibrium Thermodynamics”, Netsu Sokutei, 24 (4), (1997), 165-170.
  14. J. Łaskawiec, M. Danielewski, Z. Żurek, M. Hetmańczyk, R. Filipek, A. Milewska, A. Iwaniak, “Symulacje komputerowe dyfuzji wzajemnej w procesie selektywnego utleniania stali chromowo-manganowych”, w Mat. VI Sem. Naukowego “Nowe Technologie i Materiały w Metalurgii i Inżynierii Materiałowej”, Pol. Śl., Katowice, 22-05-1998, str. 298-302.
  15. M. Danielewski, R. Filipek, M. Hetmańczyk, R. Bachorczyk, “Dyfuzja w procesach obróbki powierzchniowej i korozji stopów”, w Mat. Konf. N-T “Nowe Materiały – Nowe Technologie Materiałowe w Przemyśle Okrętowym i Maszynowym”, Szczecin – Świnoujście, 10 – 13.09.1998 (PPH ZAPOL. Szczecin 1998) vol. 1, str. 13-21.
  16. K. Holly, M. Danielewski, R. Filipek, J. Łaskawiec, A. Milewska, Z. Żurek, “On the Mechanism of Heterogeneous Reaction, Interdiffusion in Oxidized Multicomponent Alloy”, w Mat. Symp. “On High Temperature Corrosion and Materials Chemistry”, 193rd meeting of the Electrochemical Soc. w San Diego, CA, 3 – 8 maja 1998, The Electrochem. Soc., Inc., Proceedings Vol. 98 – 9., str. 241-252.
  17. M. Danielewski, R. Filipek, T. Walec, A. Milewska, “Interdiffusion driven by the reactive diffusion, interdiffusion in oxidized alloy”, Metallofiz. Noveishie Tekhnol., 21, (1999), 96-100.
  18. M. Danielewski, R. Filipek, A. Milewska, A. Rakowska, T. Walec, “Rola Dyfuzji Wzajemnej w Utlenianych Stopach i Powłokach Wieloskładnikowych “, Ochrona przed Korozją, XLII, (1999), 517-523.
  19. R. Bachorczyk, W. Chan, M. Danielewski, P. K. Datta, R. Filipek, G. Fisher, A. Rakowska, “Stabilność termiczna i dyfuzja wzajemna w powłokach wieloskładnikowych, Modyfikowane platyną powłoki β – NiAl na superstopach”, Archiwum Nauki o Materiałach, 20, (1999), 95-111.
  20. R. Bachorczyk, M. Danielewski, S. Datta, R. Filipek, A. Rakowska, “Możliwości symulowania dyfuzji wzajemnej w układach wieloskładnikowych na przykładzie powłok β -NiAl na superstopie MAR M002”, Inż. Materiałowa, 20 (5), (1999), 527-520.
  21. M. Danielewski, R. Filipek, J. Łaskawiec, A. Milewska, A. Rakowska, T. Walec, Z. Żurek, “On the Mechanism of Corrosion of the Fe-Cr-Mn Alloys in Sulphur Containing Atmospheres”, w Mat. Int’l Conf. on Environmental Degradation of Engineering Materials, Politechn. Gdańska, Gdańsk-Jurata, 19 – 23 września 1999, str. 86.
  22. M. Danielewski, R. Filipek, K. Holly, M. Hetmańczyk, J. Łaskawiec, “The Mathematical Model and Computer Simulation of Interdiffusion Driven by the Reactions at Interface”, w Mat. Int’l Conf. Solid – Solid Phase Transformation, The Japan Inst. of Metals Proc., 12, (1999), 453-456.
  23. M. Danielewski, R. Filipek, A. Milewska, „Generalized Darken Model: Chemical Interdiffusion In Oxides and Oxidized Multicomponent Alloys ”, w Mat. “High Temperature Corrosion and Materials Chemistry”, The Electrochem. Soc., Inc., Proceedings Vol. 99 – 38, str. 40-51.
  24. R. Filipek, “Interdiffusion in Multi-Component Systems Showing Variable Intrinsic Diffusivities”, Solid State Phenomena, 72, (2000), 165-170.
  25. M. Danielewski, R. Filipek, A. Milewska, “Interdiffusion in Oxidized Multicomponent Alloys”, Solid State Phenomena, 72, (2000), 23-28.
  26. R. Bachorczyk, M. Danielewski, P. K. Datta, R. Filipek, G. Fisher, “Computer Simulations of Heterogeneous Reactions Controlled by Diffusion in Modified Aluminide Coatings on a Nickel-Based Superalloy”, Solid State Phenomena, 72, (2000), 53-58.
  27. R. Bachorczyk, M. Danielewski, R. Filipek, “Kirkendall Shift in Multicomponent Systems”, Solid State Phenomena, 72, (2000), 153-156.
  28. S. Bednarz, S. Golec, B. Bożek, M. Danielewski, R. Filipek, K. Holly, “Dynamics of the carbon mass in the transient press”, Karbo, 4-5, (2000), 165-170. 0
  29. R. Filipek, “Mathematical model of interdiffusion in multi-component open systems showing concentration dependent intrinsic diffusivities”, J. of Molecular Liquids, 86, (2000), 69-76.
  30. R. Bachorczyk, M. Danielewski, P. K. Datta, R. Filipek, “Model of Heterogenous Reaction Controlled by Diffusion”, J. of Molecular Liquids, 86, (2000), 61-67.
  31. M. Danielewski, R. Filipek, “Interdiffusion in Oxide Solid Solutions, Simulation of the Process and Calculation of Intrinsic Diffusivieties”, Mol. Cryst. and Liq. Cryst., 341, (2000), 277-282.
  32. B. Wendler, M. Kamiński, M. Danielewski, R. Filipek, A. Rylski, “Modulowane wielowarstwy TiCN/VCN jako bariery korozyjne i dyfuzyjne na stali”, Inżynieria Materiałowa, 6, (2000), 466-469.
  33. M. Danielewski, P. K. Datta, R. Filipek, R. Bachorczyk, “Transport Properties of Pt Modified β-NiAl”, w Mat. Ogólnopolskiego Symp. Naukowego “Stopy na Osnowie Faz Międzymetalicznych”, Warszawa 19 października 2000, str. 41-45. 
  34. B. Bożek, R. Filipek, K. Holly, C.Mączka, “Distribution of Temperature in Three-Dimmensional Solids”, Opuscula Mathematica, 20, (2000) 27-40.
  35. M. Danielewski, R. Filipek, A. Milewska, A. Rakowska, “Interdiffusion in oxidized Multicomponent Alloys”, Ceramika, 61, (2000), 189-195. 0
  36. M. Danielewski, R. Filipek, A. Milewska, “Interdiffusion in Oxidized Binary and Higher Alloys”, Schiften des Forschungszentrums Julich Energy Technology, 15, (2000), 613-616.
  37. P.K. Datta, R. Filipek, M. Danielewski, R. Bachorczyk, R. Best, A. Rakowska, “Intrinsic Diffusivities and Thermal Stability of Multi-Component Coatings”, Schiften des Forschungszentrums Julich Energy Technology, 15, (2000), 617-620.
  38. M. Danielewski, R. Filipek, T. Walec, A. Rakowska, “Interdiffusion Driven by the Reactive Diffusion, Interdiffusion in Oxidized Alloy”, Met. Phys. Adv. Tech., 19, (2001), 155-163.
  39. R. Filipek, “Variable Intrinsic Diffusivities in Ternary and Higher Alloys”, Defect and Diffusion Forum, 194-199, (2001), 209-216.
  40. R. Filipek, P.K. Datta, M. Danielewski, L.Bednarz, R. Best, A. Rakowska, “Interdiffusion in the Pt/ β-NiAl System”, Defect and Diffusion Forum, 194-199, (2001), 571-576.
  41. Z. Jurasz, M. Danielewski, R. Filipek, “Calculations of Iron Diffusion Coefficients – High Temperature Oxidation in Air in a Cylindrical Geometry”, Defect and Diffusion Forum, 194-199, (2001), 1719-1724.
  42. J. Nowacki, M. Danielewski, R. Filipek, “Assessment of vacuum brazed joints 14 – 5 PH steel – 82Au 18Ni solder”, w Mat. of 10th Jubilee International Scientific Conference “Achievement in Mechanical and Materials Engineering”, Zakopane, 9-13 December 2001, str. 369-372.
  43. S. Datta, R. Filipek, M. Danielewski, “Interdiffusion Issues in Pt Modified NiAl Coatings”, Defect and Diffusion Forum, 203-205, (2002), 47-60.
  44. M. Danielewski, R. Filipek, A. Milewska, K. Szyszkiewicz, “Modelowanie procesu selektywnego i konkurentnego utleniania stopów wieloskładnikowych”, Wyd. spec. Ochrona przed Korozją, (2002), 549-554.
  45. R. Filipek, „Interdiffusion in Non-Ideal Multi-Component Systems”, Bulletin of Cherkasy State University, Physics, 37-38, (2001-2002), 61-68.
  46. R. Bachorczyk, M. Danielewski, R. Filipek, „Interdiffusion under the Chemical Potential Gradient; Comparison of Onsager and Darken Models”, Defect and Diffusion Forum, 216-217 (2003), 141-148.
  47. M. Danielewski, S. Datta, J. Dąbek, R. Filipek, B. Wendler, A. Rylski, „Corrosion Resistance and Thermal Stability of Hybryd Coatings”, Ann. Chim. Sci. Mat., 28 (2003), 167-174.
  48. B. Kucharska, M. Danielewski, R. Filipek, “Modelowanie utleniania stali P91-czas przejścia w badaniach eksperymentalnych i modelowanie”, Ochrona przed Korozją, 11s/A (2003), 148-152.
  49. A. Rakowska, R. Filipek, K. Sikorski, M. Danielewski, “EDS X-Ray Investigation of Interdiffusion in Au-Ni Micro- and Nanolayers”, Microchimica Acta, 145 (2004), 183-186.
  50. R. Filipek, “Interdiffusion in Non-ideal Systems”, Archives of Metallurgy and Materials, 49(2) (2004), 201-218.
  51. B. Wendler, M. Danielewski, J. Dąbek, A. Rylski, R. Filipek, “Modern refractory AlMo and AlMoSi coatings on steels with diffusion barrier”, Thin Solid Films, 459 (2004), 178-182.
  52. J. Nowacki, M. Danielewski, R. Filipek, “Brazed joints evaluation and computer modelling of mass transport in multi-component systems in the AuNi solder-14-5 PH joints”, J. Mat. Proc. Techn., 157-158, (2004), 213-220.
  53. S.V. Divinski, F. Hisker, Chr. Herzig, R. Filipek, M. Danielewski, “Self- and Interdiffusion in Ternary Cu-Fe-Ni Alloys”, Defect and Diffusion Forum, 237-240, (2005), 50-62.
  54. R. Filipek, “Modelling of Interdiffusion and Reactions at the Boundary; Initial-Value Problem of Interdiffusion in the Open System”, Defect and Diffusion Forum, 237-240, (2005), 250-256.
  55. R. Filipek, K. Szyszkiewicz, “Numerical Analysis of Interdiffusion in Multi-Component Systems”, Defect and Diffusion Forum, 237-240, (2005), 257-265.
  56. R. Filipek, M. Danielewski, R. Bachorczyk, “Interdiffusion Studies in Co-Fe-Ni Alloys”, Defect and Diffusion Forum, 237-240, (2005), 408-413.
  57. R. Filipek, M. Danielewski, E. Tyliszczak, M. Pawełkiewicz, S. Datta, “Thermal Stability of NiAl-Base Coatings for High Temperature Application”, Defect and Diffusion Forum, 237-240, (2005), 709-714.
  58. M. Danielewski, R. Filipek, M. Pawełkiewicz, D. Klassek, K. Kurzydłowski, “Modelling of Oxidation of Fe-Ni-Cr Alloys, Defect and Diffusion Forum, 237-240, (2005), 958-964.
  59. M. Danielewski, R. Filipek, B. Kucharska, “Prediction of the Depletion Zone due to Selective Oxidation of P91 Steel”, Defect and Diffusion Forum, 237-240, (2005), 965-970.
  60. M. Danielewski, R. Filipek, B. Kucharska, “The Advantageous Method of Reaction Products Determination for P91 Steel Oxidation”, Inżynieria Powierzchni, 2A, (2005), 219-223.
  61. I.V. Belova, G.E. Murch, R. Filipek, M. Danielewski, “Theoretical analysis of experimental tracer and interdiffusion data in Cu-Fe-Ni alloys”, Acta Materialia, 53, (2005), 4613-4622.
  62. R. Filipek, „Modelowanie dyfuzji w układach wieloskładnikowych”, Ceramika, 90, (2005), 1-272.
  63. J. Wojewoda, P. Zięba, R. Onderka, R. Filipek, P. Romanów , „Growth kinetics of the intermetallics formed in diffusion soldered interconnections”, Archives of Metallurgy and Materials, 51(3), (2006), 345–353.
  64. R. Filipek, K. Szyszkiewicz, M. Danielewski, A. Lewenstam, „Numerical method and analysis of consistency for electrodiffusion problem”, Proceedings of the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007), Corfu, Greece, 25–30 September 2007, Vol. 2, 473–476.
  65. M. Danielewski, R. Gajerski, R. Filipek, S. Łabuś, E. Tyliszczak-halibożek, A. Milewska, The hybrid coatings against hot corrosion: on-site and laboratory tests on P91 and carbon steels”, Proceedings of the BALTICA VII : life management and maintenance for power plants, Helsinki–Stockholm–Helsinki, 12–14 June, 2007, Vol. 2, 98–108.
  66. B. Paczosa-Bator, R. Filipek, J. Jasielec, M. Danielewski, A. Lewenstam, „The time-dependent potentiometric response of Na+ sensitive polymeric membranes treated by the DLM and NPP models”, Chemické Listy, 102, (2008), 127.
  67. P. Pasierb, R. Filipek, M. Rękas, Chemical diffusion in Sr(Ce1-xYx)O3-δ, Polish Journal of Chemistry, 83, (2009), 1443–1454.
  68. R. Filipek, K. Szyszkiewicz-warzecha, B. Bożek, M. Danielewski, A. Lewenstam, „Diffusion transport in electrochemical systems: a new approach to determining of the membrane potential at steady state”, Defect and Diffusion Forum, 283–286, (2009), 487–494.
  69. P. Skrzyniarz, A. Sypień, J. Wojewoda-Budka, R. Filipek, P. Zięba, „Mikrostruktura i kinetyka wzrostu faz w połączeniu Ag/Sn/Ag uzyskanym w wyniku lutowania dyfuzyjnego niskotemperaturowego”, Materiały konferencyjne, XXXVII Szkoła Inżynierii Materiałowej, Kraków–Krynica, 29.IX–2.X.2009, 281–288.
  70. A. Lewenstam, T. Sokalski, J. Jasielec, W. Kucza, R. Filipek, B. Wierzba, M. Danielewski, „Modeling non equilibrium potentiometry to understand and control selectivity and detection limit”, ECS Transactions, The Electrochemical Society, 19 (6), (2009), 219–224.
  71. P. Skrzyniarz, J. Wojewoda-Budka, R. Filipek, P. Zięba, „Microstructure and kinetics of intermetallic phases growth in Ag/In/Ag joint obtained as the result of diffusion soldering”, Inżynieria Materiałowa, 31 (3), (2010), 662–665.
  72. P. Skrzyniarz, A. Sypień, J. Wojewoda-Budka, R. Filipek, P. Zięba, „Microstructure and kinetics of intermetallic phases growth in Ag/Sn/Ag joint obtained as the results of diffusion soldering”, Archives of Metallurgy and Materials, 55 (1), (2010), 123–130.
  73. J.J. Jasielec, T. Sokalski, R. Filipek, A. Lewenstam, „Comparison of different approaches to the description of the detection limit of ion-selective electrodes”, Electrochimica Acta, 55 (22), (2010), 6836–6848.
  74. B. Grysakowski, J.J. Jasielec, B. Wierzba, T. Sokalski, A. Lewenstam, M. Danielewski, “Electrochemical Impedance Spectroscopy (EIS) of Ion Sensors. Direct modelling and inverse problem solving using the Nernst-Planck-Poisson (NPP) model and the HGS(FP) optimization strategy”, J. Electroanal. Chem., 662, (2011), 143-149
  75. J.J. Jasielec, B. Wierzba, B. Grysakowski, T. Sokalski, M. Danielewski, A. Lewenstam, “Novel Strategy for Finding the Optimal Parameters of Ion Selective Electrodes”, ECS Transactions, 33 (26), (2011), 19-29.
  76. J. J. Jasielec, R. Filipek, K. Szyszkiewicz, J. Fausek, M. Danielewski, A. Lewenstam, „Computer simulations of electrodiffusion problems based on Nernst-Planck and Poisson equations”, Computational Materials Science, 63, (2012),75–90.
  77. R. Filipek, K. Szyszkiewicz, P. Dziembaj, P. Skrzyniarz, A. Wierzbicka-Miernik, P. Zięba, Modeling of reactive diffusion: mechanism and kinetics of the intermetallics growth in Ag/Ag interconnections, Journal of Materials Engineering and Performance, 21 (5), (2012), 638–647.
  78. J. Fausek, K. Szyszkiewicz, R. Filipek, “Numerical Aspects of Electrodiffusion Problem Based on Nernst-Planck and Poisson Equations”, Defect and Diffusion Forum, 323-325, (2012), 81–86.
  79. A. Wierzbicka-Miernik, K. Miernik, J. Wojewoda-Budka, K. Szyszkiewicz, R. Filipek, L. Litynska-Dobrzyńska, A. Kodentsov, P. Zięba, „Growth kinetics of the intermetallic phase in diffusion-soldered Cu-5 at.%Ni/Sn/Cu-5 at.%Ni interconnections, Materials Chemistry and Physics, 142 (2–3), (2013), 682–685.
  80. K. Szyszkiewicz, P. Dziembaj, R. Filipek, „Heat transfer and inverse problems; selected cases in 1D and 3D geometries”, Archives of Metallurgy and Materials, 58 (1), (2013), 9–18.
  81. R. Filipek, K. Szyszkiewicz-Warzecha, “Metody matematyczne dla ceramików”, Akademia Górniczo-Hutnicza, Kraków 2013, 1-293.
  82. J.J. Jasielec, G. Lisak, M. Wagner, T. Sokalski, A. Lewenstam, “Nernst-Planck-Poisson
    Model for the Qualitative Description of the Behaviour of Solid-Contact
    Ion-Selective-Electrodes at Low Analyte Concentration”, Electroanalysis, 25, (2013),
    133-140.
  83. K. Szyszkiewicz, M. Danielewski, J. Fausek, J. J. Jasielec, W. Kucza, A. Lewenstam, T. Sokalski, R. Filipek, „Breakthrough in modeling of electrodiffusion processes : continuation and extensions of the classical work of Richard Buck”, ECS Transactions, The Electrochemical Society, vol. 61 (15), (2014), 21–30.
  84. J.J. Jasielec, T. Sokalski, R. Filipek, A. Lewenstam, „Neutral-carrier ion-selective electrodes assessed by the Nernst-Planck-Poisson model”, Analytical Chemistry, 87 (17), (2015), 8665–8672.
  85. K. Szyszkiewicz, J.J. Jasielec, J. Fausek, R. Filipek, „Inverse Problems in Mass and Charge Transport”, Ann. Chim. Sci. Mat., 40 (1-2), (2016), 51-59.
  86. J.J. Jasielec, R. Filipek, K. Szyszkiewicz, T. Sokalski, A. Lewenstam, „Continuous Modelling of Calcium Transport through Biological Membranes”, Journal of Materials Engineering and Performance, 25 (8), (2016), 3285–3290.
  87. K. Szyszkiewicz-Warzecha, J. J. Jasielec, J. Fausek, R. Filipek, „ Determination of Diffusion Coefficients in Cement Based Materials: An Inverse Problem for the Nernst-Planck and Poisson Models”, Journal of Materials Engineering and Performance, 25 (8), (2016), 3291–3295.
  88. R. Filipek, P. Kalita, L. Sapa, K. Szyszkiewicz, “On local weak solutions to Nernst–Planck–Poisson system”, Applicable Analysis, 96 (13), (2017), 2316–2332.
  89. K. Szyszkiewicz, J.J. Jasielec, A. Królikowska, R. Filipek, „Determination of Chloride Diffusion Coefficient in Cement-Based Materials – A Review of Experimental and Modeling Methods: Part I – Diffusion Methods”, Cement Wapno Beton, 1, (2017), 52–67.
  90. J.J. Jasielec, K. Szyszkiewicz, A. Królikowska, R. Filipek, „Determination of Chloride Diffusion Coefficient in Cement-Based Materials – A Review of Experimental and Modeling Methods: Part II – Migration Methods”, Cement Wapno Beton, 2, (2017), 154–167.
  91. K. Szyszkiewicz, J.J. Jasielec, A. Królikowska, R. Filipek, „Determination of Chloride Diffusion Coefficient in Cement-Based Materials – A Review of Experimental and Modeling Methods: Part III – EIS Based Methods”, Cement Wapno Beton, 3, (2017), 219–229.
  92. K. Szyszkiewicz, J. J. Jasielec, M. Danielewski, A. Lewenstam, R. Filipek, “Modeling of Electrodiffusion Processes from Nano to Macro Scale”, Journal of The Electrochemical Society, 164 (11), (2017), E3559–E3568.
  93. A. Wierzbicka-Miernik, K. Miernik, R. Filipek, K. Szyszkiewicz, “Kinetics of intermetallic phase growth and determination of diffusion coefficients in solid–solid-state reaction between Cu and (Sn+1at.%Ni) pads”, J Mater Sci, 52, (2017), 10533–10544.
  94. R. Filipek, K. Szyszkiewicz, “Inverse methods in corrosion research and materials degradation”, Ochrona przed Korozją, 60 (10), (2017), 358–363.
  95. J. Stec, R. Filipek, “Modeling of liquid flow through the porous materials of different microstructure”, Cement Wapno Beton, 6, (2017), 489–506.
  96. R. Filipek, P. Pasierb, A. Królikowska, L. Komorowski, Ł. Augustyński, J. Deja, A. Łagosz, J. Migdalski, A. Lewenstam, T. Plecha, S. Kaszuba, “Nowa, nieniszcząca metoda diagnostyki procesów korozyjnych na konstrukcjach żelbetowych”, Ochrona przed Korozją, 60 (12), (2017), 391–395.
  97. J.J. Jasielec, Z. Mousavi, K. Granholm, T. Sokalski, A. Lewenstam, “Sensitivity
    and Selectivity of Ion-Selective Electrodes interpreted using the Nernst-Planck-Poisson
    model (NPP)”, Anal. Chem., 90 (15), (2018), 9644-9649.
  98. J. Stec, J. Tarasiuk, S. Nagy, R. Smulski, J. Gluch, R. Filipek, “Non-destructive investigations of pore morphology of micropore carbon materials”, Ceramics international, 45, (2019), 3483-3491.
  99. R. Filipek, „Modeling and inverse methods in materials engineering” – monograph, Wydawnictwo Naukowe “Akapit”, Kraków 2019.
  100. J. Stec, J. Tarasiuk, S. Wroński, R. Filipek, “Permeability of micropore carbon materials based on steady-state pore-scale flow calculations in real 2D and 3D microstructures”, Ceramics international, 45, (2019), 17638-17645, doi: 10.1016/j.ceramint.2019.05.329.
  101. R. Filipek, A. Łagosz, J. Deja, K. Szyszkiewicz-Warzecha, J. Stec, “Determination of transport and kinetic Parameters in cementitious materials – Inverse methods in corrosion of rebars in concrete”, 15th International Congress on the Chemistry of Cement Prague, Czech Republic, September 16–20, 2019
  102. P. Lingenfelter, B. Bartoszewicz, J. Migdalski, T. Sokalski, M. M. Bućko, R. Filipek, A. Lewenstam, “Reference Electrodes with Polymer-Based Membranes—Comprehensive Performance Characteristics”, Membranes, 9, (2019), 161–183.
  103. R. Filipek, K. Szyszkiewicz-Warzecha, J. Szczudło, Corrosion of steel in concrete – modeling of electrochemical potential measurement in 3D geometry, Arch. Metall. Mater., 65, (2020), 117–124.
  104. J.J. Jasielec, R. Filipek, K. Dołowy, A. Lewenstam, Precipitation of Inorganic Salts in Mitochondrial Matrix, Membranes, 10, (2020), 81–109.
  105. J. J. Jasielec, J. Stec, K. Szyszkiewicz-Warzecha, A. Łagosz, J. Deja, A. Lewenstam, R. Filipek, Effective and Apparent Diffusion Coefficients of Chloride Ions and Chloride Binding Kinetics Parameters in Mortars: Non-Stationary Diffusion–Reaction Model and the Inverse Problem, Materials 2020, 13, 5522–5545.