3rd Minisymposium on Materials, Characterization and Modelling

2D layered materials for fast-kinetics energy storage

Dr. Minghao Yu

PI, Group Leader Technische Universität Dresden minghao.yu@tu-dresden.de

Funded by the European Union

the European Union

BattSkin project

European Research Council Established by the European Commission

erc

About Dresden

Beautiful tourism city, 'Florence on the Elbe'

TU Dresden Campus

About Dresden

TU Dresden

- ➢ 28,952 students
- > 8,303 employees
- ≻ TU9
- > Universities of Excellence (1/11)

Chemistry of synthetic twodimentional materials

• Sustainable energy transition

https://cdiac.ess-dive.lbl.gov/trends/emis/glo 2014.html

Generated by ChatGPT

Energy storage devices provide an efficient solution to flexibly store, transport, and deliver intermittent sustainable energies.

4

Battery demand will grow by 27% annually to reach 4,700 GWh by 2030.

Source: McKinsey Battery Insights

• State-of-the art Li-ion batteries

Resource: Li triangle

Recyclability: tera-Wh market

Store/release charges/ions simultaneously

Safety: Li-ion battery fire in Neermoor Germany, May 2024

• Future sustainable battery concepts

Cheap cations

What material structures enable fast, reversible, and high-capacity storage of sustainable ion species?

Grand challenges

Sustainable battery electrochemistry

Electrode

- Sluggish electrochemical kinetics.
- Limited ion-hosting capability.

Electrode/electrolyte interface

- Side reactions on electrode surface.
- Anion/solvent co-insertion.

Electrolyte

- Intense ion solvation.
- Strong anion-cation pairing.

Battery devices: low efficiency, capacity, energy, cycling life...

Our Research Interests

Key materials & electrochemistry in sustainable energy storage devices

• Energy-power tradeoff

Simon & Gogotsi, Nat. Mater., 2020, 19, 1151

How to store ions more and faster?

- Highly tailorable interlayer structure
- Flexibly tunable surface chemistry

Nat. Mater. 2024; Adv. Energy Mater. 2023; Adv. Mater. 2022; Angew. Chem. 2021; Nat. Commun. 2020; Joule 2019

K⁺ Hopping

MoO₃ with lattice H₂O

• Replacing lattice O with H₂O molecules

Lattice oxygen replaced by H_2O : $MoO_{2.7} \cdot 0.3H_2O$ ➤ 4.4% vs. 40.2% , from 0.1 to 10 mV s⁻¹

Nat. Commun. 2020, 11, 1348. 11

MoO₃ with lattice H₂O

1.3°

 α -MoO₃ with expanded vdW gap

Co. with Prof. Patrice Simon

0.8°

Less volume change.

Nat. Commun. 2020, 11, 1348.

• Performance in the Zn battery electrolyte

2 M ZnCl₂ aqueous electrolyte (pH 4.3)

356.8 vs. 184.0 mA h g⁻¹
77.5% vs. 42.4%, from 0.4 to 4.8 A g⁻¹

Selective H₃O⁺-intercalation chemistry

Angew. Chem. Int. Ed. 2021, 60, 896-903. 13

• H₃O⁺-insertion mechanism

Temperature-dependent EIS measurement

 $E_a = 0.28 \text{ eV}$ for proton transport $E_a < 0.4 \text{ eV}$: Grotthuss conduction

Grotthuss proton-conduction mechanism

Angew. Chem. Int. Ed. 2021, 60, 896-903. 14

• $M_{n+1}X_nT_x$ (n = 1-4, T_x : terminal groups)

Flux-assisted eutectic molten etching

Wet-chemistry etching

Mixing termination (-F/-Cl, -O, -OH)

Molten-salt etching Mixing termination (-Cl, -O)

Co. with Prof. Ehrenfried Zschech

B

Nat. Mater. **2024**, *23*, 1085.

MXenes with OBO-termination

Triatomic-layer borate polyanion terminations

Van der Pauw:

15-fold enhancement in conductivity.

THz spectroscopy:

Carrier mobility by 10-fold improvement

Nat. Mater. 2024, 23, 1085. 16

MXenes with OBO-termination

Charge storage properties

OBO-Ti₃C₂ vs. ClO-Ti₃C₂: 423.2 mAh g⁻¹ vs. 224.6 mAh g⁻¹.
 More Li⁺-storage sites: on-top sites and OBO-cage sites.

MXenes with PO₂-termination

Targeted termination conversion

Adv. Mater. **2022**, 34, 2108682 **18**

MXenes with PO₂-termination

• As Na⁺-hosting anode

Doubled Na⁺-storage capacity

- 1. Additional Na⁺-adsorption sites provided by PO₂-terminals.
- 2. Enhanced redox depth of surface Nb atoms.

Adv. Mater. 2022, 34, 2108682 19

• Emerging synthetic layered functional materials

- > π -ligand + square-planar Metal-X₄ linkage
- \blacktriangleright Extended π –d-conjugated planes
- Pseudocapacitive material construction

- > Polymerization under **thermodynamic control**.
- Self-correction toward layered crystals
- Particular desired for multivalent ion storage

How to design redox and stable molecules with framework chemistries?

Angew. Chem. 2025; Angew. Chem. 2023; JACS 2023; JACS 2021; JACS 2020; JACS 2020;

• Dual-redox-site 2D c-MOFs

Phthalocyanine-based 2D c-MOF

• Dual-redox-site 2D *c*-MOFs

Phthalocyanine-based 2D c-MOF

1 M Na₂SO₄ aqueous electrolyte

✓ -0.8 ~ 0.8 V vs. Ag/AgCl
 ✓ 400 F g⁻¹ at 0.5 A g⁻¹

Redox pairs: A/F, B/E

J. Am. Chem. Soc. 2021, 143, 10168.

Linkage-dependent pseudocapacitive behaviours

Only NiS₄ linkages exhibit apparent pseudocapacitive charge storage. \checkmark 343 C g⁻¹ at 0.5 A g⁻¹ J. Am. Chem. Soc. **2023**, 145, 6247.

Linkage-dependent pseudocapacitive behaviours

In situ X-ray absorption spectra

Pseudocapacitance is not from the valence change of metal (Ni) atoms.

J. Am. Chem. Soc. **2023**, 145, 6247.

Polyimide 2D COF for multivalent ion storage

The first COF for Zn²⁺ storage

Highly accessible redox-active sites

92 mAh g⁻¹ at 0.7 A g⁻¹

J. Am. Chem. Soc. 2020, 142, 19570.

> 85% capacity retention over 4,000 cycles 25

Polyimide 2D COF for Zn²⁺ storage

Two-step Zn²⁺ storage

Raman shift / cm⁻¹

Two-step redox reaction

Current density / A g⁻¹

J. Am. Chem. Soc. 2020, 142, 19570.

Stepwise carbonyl-enolate conversion. 26

• Redox-bipolar polyimide 2D COFs for Al batteries

Structure design: n type imide + p type triazine moieties

Angew. Chem. Int. Ed. 2023, 62, e202306091.

2D-NT-COF30

PAQS

0.10

<10-3

Redox-bipolar polyimide 2D COFs for AI batteries

Al-COF batteries: EMIMCI/AlCl₃

Angew. Chem. Int. Ed. 2023, 62, e202306091.

Stable for 4,000 cycles.

28

• Interphase in emerging batteries

Peled et al. J. Electrochem. Soc. 2017, 164, A1703

Can one construct artificial interphase for emerging battery chemistries?

- Dense direct nanochannels.
- Allow rapid and homogeneous ion flux in.
- Keep harmful solvent/ion out.

Nat. Commun. 2024; Angew. Chem. 2024; Nat. Commun. 2023;

Proton-selective interphase for aqueous batteries

Sluggish Zn²⁺-dominated vs. fast H⁺-involved cathode chemistry

Dense proton-conduction groups -OH, imine, and porphyrin pyrrole units.

Filtering ions at the electrode-electrolyte interphase

• 2D crystalline polyimine membrane

H⁺ selectivity over Zn²⁺

The highest H⁺/Zn²⁺ selectivity reaches > 140.

Nat. Commun. 2024, 15, 2139.

• 2D crystalline polyimine membrane

Coating for high-loading cathodes

CENTER FOR

DRESDEN

ELECTRONICS

Electrochemistry transition from Zn²⁺- to H⁺-dominated 4.5 mAh cm⁻² and 33.8 Wh m⁻²

NaV₃O₈·1.5H₂O (10 mg cm^{-2})

Anion-selective electrode skin

Stable pyridinium salt linkage with cationic backbone

Anion intercalation 2 M LiPF₆ in DMC, $3.5^{-5.1}$ V

Face-on crystals with dense 1D nanochannels directly across the memberane

• 2D crystalline poly(pyridinium salt) membrane

Electrode skin for graphite cathodes

Electrolyte decomposition inhibited

Nat. Commun. 2023, 14, 760.

Graphite

C2DP-G

5 nm

• 2D crystalline poly(pyridinium salt) membrane

Synchrotron operando X-ray diffraction

Inhibiting CEI formation and graphite structure degradation

Nat. Commun. 2023, 14, 760.

What we have learned...

- Interlayer space and surface chemistry
- Controlling ion transport and storage behaviors

- Design of stable linkages and dual redox sites
- Potential applications in supercapacitors and multivalent batteries

Polymeric artificial interphase

- Constructing stable ionselective interphase for emerging batteries
- Enable high battery reaction kinetics and reversibility

Former members:

Dr. Faxing Wang, Dr. Panpan Zhang Dr. Xia Wang, Dr. Boya Sun

New comers:

Dr. Tian Sun, Dr. Xinmei Song Ruofan Yin, Yuhang Zhuang, Imran Khan

Collaborators: TUD: Prof. Xinliang Feng, Prof. Thomas Heine, Prof. Stefan Kaskel, Prof. Thomas D. Kühne, Prof. Eike Brunner, Prof. Inez M. Weidinger. MPI Mainz: Prof. Mischa Bonn. MPI Dresden: Prof. Claudia Felser. IFW Dresden: Prof. Axel Lubk, Prof. Kornelius Nielsch. KIT: Prof. Daria Mikhailova, HZDR: Dr. Arkady Krasheninnikov. Argonne National Lab: Prof. Tao Li. U Ulm: Prof. Ute Kaiser. UPS: Prof. Patrice Simon. UCT Prague: Prof. Zdenek Sofer. TU Brno: Prof. Tomáš Šikola. U Utrecht: Prof. Hai Wang. U Warsaw: Prof. Ehrenfried Zschech. U Mons: Prof. David Beljonne. U Leiden: Prof. Grégory Schneider

Funded by the European Union

European Research Council Established by the European Commission

Thank you for your attention.